Shape Memory Response of Polycrystalline NiTi12.5Hf Alloy: Transformation at Small Scales
نویسندگان
چکیده
The transformation behavior of NiTiHf alloys is intriguing. In NiTiHf alloys, the experimental transformation strains have been reported to be considerably lower than theoretical transformation strains. In this study, the transformation strain is established with very careful strain measurements at small scales in isobaric and isothermal experiments. Because of the heterogeneity of strain distributions, the results depend on the sub-region considered. The measured local transformation strain can be as high as 6.0 % in compression which is in very good agreement with theoretical calculations for NiTi12.5Hf. The comprehension of NiTi12.5Hf alloy was furthered upon extensive microstructural characterization including high-resolution electron microscopy, establishing the volume fractions of precipitates and twin type. The volume fraction of precipitates is similar to that of Ni-rich binary NiTi alloys. Meanwhile, the twinning modes in the martensite are compound and Type I twins which were used in the theoretical calculations of transformation strains. This material also generates a high work output and represents a foundation for understanding higher Hf compositions.
منابع مشابه
Nonlinear Thermo-Mechanical Behaviour Analysis of Activated Composites With Shape Memory Alloy Fibres
General thermo-mechanical behavior of composites reinforced by shape memory alloy fibers is predicted using a three-dimensional analytical micromechanical method to consider the effect of fibers activation. Composite due to the micromechanical method can be exposed to general normal and shear mechanical and thermal loading which cause to activate the shape memory alloy fibers within polymeric m...
متن کاملAdaptive Tunable Vibration Absorber using Shape Memory Alloy
This study presents a new approach to control the nonlinear dynamics of an adaptive absorber using shape memory alloy (SMA) element. Shape memory alloys are classified as smart materials that can remember their original shape after deformation. Stress and temperature-induced phase transformations are two typical behaviors of shape memory alloys. Changing the stiffness associated with phase tran...
متن کاملMetamagnetic shape memory effect in a Heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy
Shape memory and magnetic properties of a Ni43Co7Mn39Sn11 Heusler polycrystalline alloy were investigated by differential scanning calorimetry, the sample extraction method, and the three-terminal capacitance method. A unique martensitic transformation from the ferromagnetic parent phase to the antiferromagneticlike martensite phase was detected and magnetic-field-induced “reverse” transition w...
متن کاملShape Memory Properties in Cu-Zn-Al Alloy
In this research a Cu-Zn-Al alloy is produced by melting the raw materials in an electric resistance furnace and then pouring it into a steel mould. The optimum way to achieve the final analysis in the hypo-eutectoid range is determined and the influence of the alloying element, Ti on the grain size and the shape memory properties of the samples are investigated. Solution treatment (done at 850...
متن کاملTRANSFORMATION BEHAVIOR OF NiTi SHAPE MEMORY ALLOYS TREATED BY THERMOMECHANICAL PROCESSING USING DSC
Abstract: In the present study the effect of thermomechanical treatment (cold work and annealing) on the transformation behavior of NiTi shape memory alloys was studied. Differential scanning calorimetry was used to determine transformation temperature and its relation to precipitates and defects. Three alloys including Ti-50.3at.% Ni, Ti-50.5at.% Ni (reclamated orthodontic wires) and 50.6at...
متن کامل